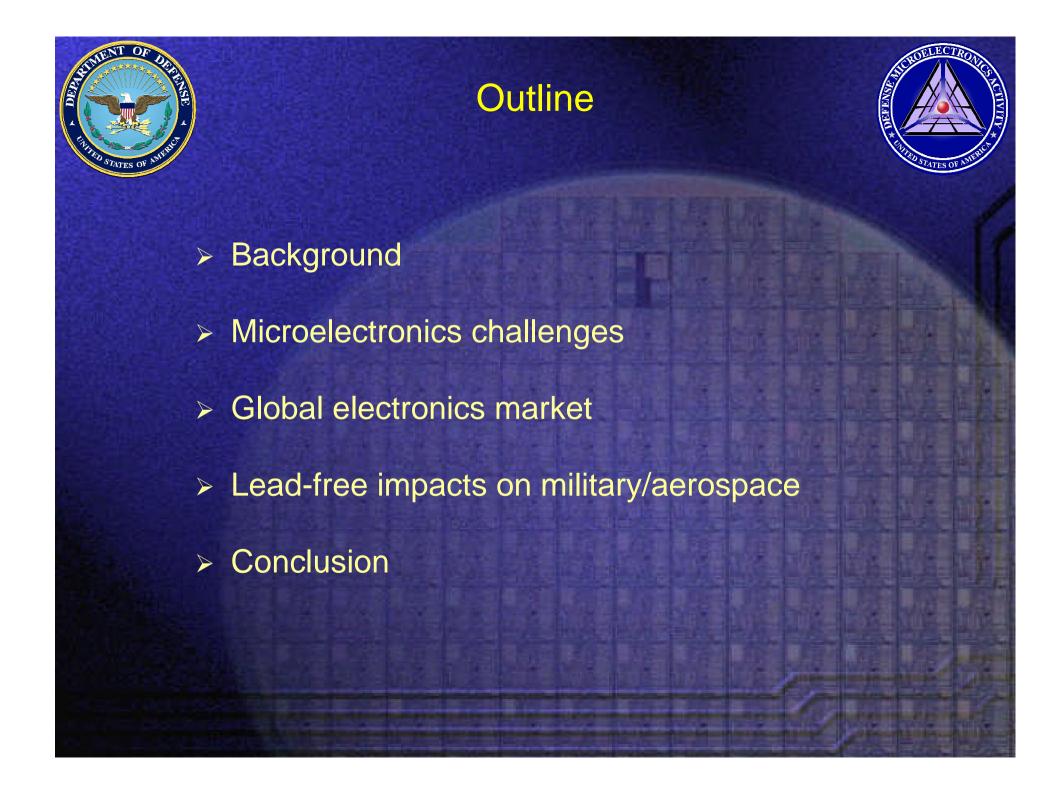


# Office of the Secretary of Defense Defense Microelectronics Activity (DMEA)








Impact of RoHS and WEEE on Military and Aerospace Applications



Vance Anderson
Defense Microelectronics Activity
McClellan, California U.S.A.
anderson@dmea.osd.mil
(916) 231-1646
www.di

NASA/C3P – 2008
International Workshop on Pollution
Prevention and Sustainable Development
University of California at San Diego
www.dmea.osd.mil 20 November 2008





### Background



### There is a global transition to Lead-free

- Reduction of Hazardous Substances (RoHS)
  - > EU Directive banning "placing on market" new electronic equipment containing specific levels of the following after July 1, 2006
    - Lead, Cadmium, Mercury, hexavalent chromium, polybrominated biphenyl (PBB), polybrominated diphenyl ether (PBDE) flame retardants
- Waste Electrical and Electronic Equipment Directive (WEEE)
  - > EU directive sets criteria for collection, treatment, recycling
  - Makes the producer responsible
- Related legislation in place or underway in China, Japan, Korea, California, and EU
- REACH will impact even more chemicals and materials



### In perspective



- U.S. is excluded from RoHS and most other legislation
  - Most Government systems are not sold outside the U.S.
- Foreign military sales and foreign operations are a concern
- Not all systems can (or need to) be manufactured using MIL-SPEC components

The lead-free transition can impact any program regardless of whether the program itself is exempt or bound by environmental regulations.



## Microelectronics Challenges for Defense Systems



Increased use / reliance on microelectronics ("Smart" systems)



- > Strategic, tactical, C4I, special ops
- "Critical" DoD technology

Enabling technology for adaptive operations, transformational opportunities & spiral development





## Microelectronics Challenges for Defense Systems



- > Extended system life cycles (20 40 years)
  - Rapidly evolving, expanding missions
    - Asymmetric threats
    - New capability requirements



Increased performance degradation issues



- Diminishing Manufacturing Sources (DMS)
  - Dynamic development drives obsolescence cycles of 18 months or less
  - Over 90% of all DoD DMS cases are electronics



## Microelectronics Challenges for Defense Systems



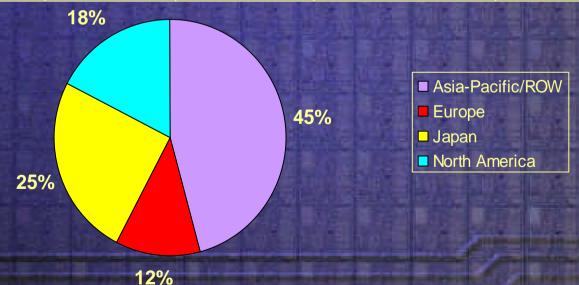
Commercial requirements dictates the technology & market

- Very high volumes for short terms
- Lower environmental & quality thresholds
- Unsecure manufacturing / distribution







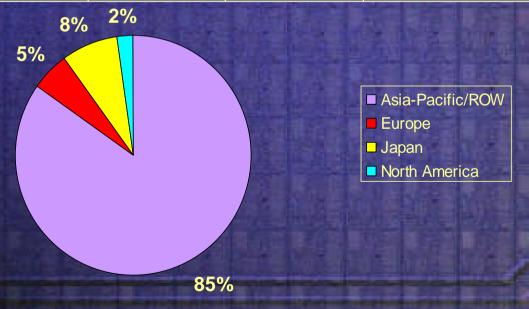



## Regional Distribution of Currently Operational Fabs (2008)



|                  | Number of<br>Fabs | Percent of<br>Total | Capacity in Equiv<br>8-inch Wafers | Percent of<br>Total |
|------------------|-------------------|---------------------|------------------------------------|---------------------|
| Asia-Pacific/ROW | 230               | 24%                 | 7,842,695                          | 45%                 |
| Europe           | 173               | 18%                 | 2,003,693                          | 12%                 |
| Japan            | 288               | 30%                 | 4,238,406                          | 25%                 |
| North America    | 267               | 28%                 | 3,015,132                          | 18%                 |
|                  | 958               |                     |                                    |                     |
| Totals           |                   |                     | 17,099,926                         |                     |

Source: World Fab Watch - Jan 2008






## Regional Distribution of Probable Future Fabs (2014)

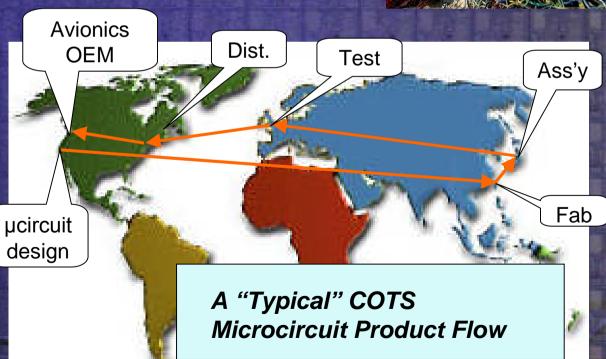


|                  | Number of<br>Fabs | Percent of<br>Total | Capacity in Equiv<br>8-inch Wafers | Percent of Total |
|------------------|-------------------|---------------------|------------------------------------|------------------|
| Asia-Pacific/ROW | 71                | 82%                 | 5,480,413                          | 85%              |
| Europe           | 10                | 11%                 | 340,238                            | 5%               |
| Japan            | 2                 | 2%                  | 502,500                            | 8%               |
| North America    | 4                 | 5%                  | 137,903                            | 2%               |
| Totals           | 81                |                     | 6,461,053                          |                  |



Source: World Fab Watch - Jan 2008




#### Where Do Your Parts Come From?



The COTS microcircuit chain is....circuitous. The number of potential combinations of links is large, and growing. The level of "control" is shrinking.







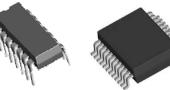


## The mil/aero challenge is significantly different



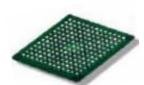
|   |                            | Commercial airplane | Military<br>airplane | Missile | Satellite     | Laptop<br>computer   |
|---|----------------------------|---------------------|----------------------|---------|---------------|----------------------|
| l | Jseful life                | 30 yrs.             | 40 yrs.              | 20 yrs. | 15 yrs.       | 3 yrs.               |
|   | Op. hrs./yr.               | 6,000 hrs.          | < 1,000<br>hrs.      | < 1 hr. | 8,760<br>hrs. | 2,000 hrs.           |
|   | echnology<br>ode           | SOA - 2             | SOA - 4              | SOA - 5 | SOA - 7       | State-of-<br>the-art |
| Ē | Environment                | Rugged              | Rugged               | Harsh   | Harsh         | Benign               |
|   | Consequences<br>of failure | High                | High                 | High    | High          | Low                  |
| F | Reparable?                 | Yes                 | Yes                  | Yes     | No            | No                   |
| _ | Development<br>sycle       | 7 yrs.              | 10 yrs.              | 11 yrs. | 15 yrs.       | < 1 yr.              |




### How Lead-Free affects the product






**Leadless Termination Finish** 

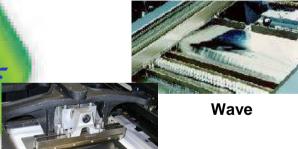
**BGA Solder Balls** 












Common Lead-free finishes on current products: matte tin, NiPdAu, **SnAgCu** 

COMPONENT **FINISHES** 



**Today: Tin-Lead HASL** Tin-Lead plate and fused



**Paste** 

Today: SnPb solders



Wire

Also: connectors, lugs, cardguides, packages, lids, etc.



## Why are Lead-Free Electronics a problem?



- Military (and Aerospace/High Performance) systems have unique requirements:
  - High reliability and critical systems
  - VERY long service life
  - Extended temperature ranges
  - Repairable systems
- DoD acquisition programs are increasingly dependent on *commercial* electronic parts and assemblies (COTS)



#### Lead-Free Solder Issues



#### Manufacturing

- Prevailing Lead-free solder replacement (SnAgCu) has ~35°C higher reflow temperature
- Can affect components and board material
- Infant mortality / Latent failures
- > Requalification?

#### Solder joint reliability (durability)

- Lead-free alloys can fail in high stress/strain applications
- Intermetallics between solder and lead/pad
- Cross contamination of different alloys
- Changed / unacceptable wetting characteristics
- New qualification parameters

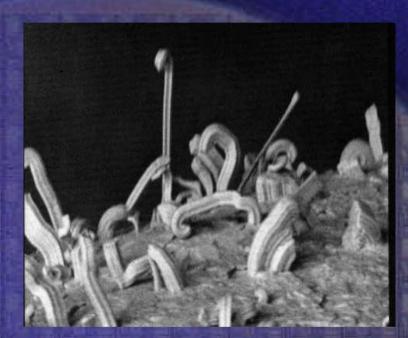
#### Configuration control

- Must prevent mixing of incompatible alloys
- Many components not uniquely identified
- Repair/Rework



**Cracked Solder Joint** 




### Tin Whisker Impacts



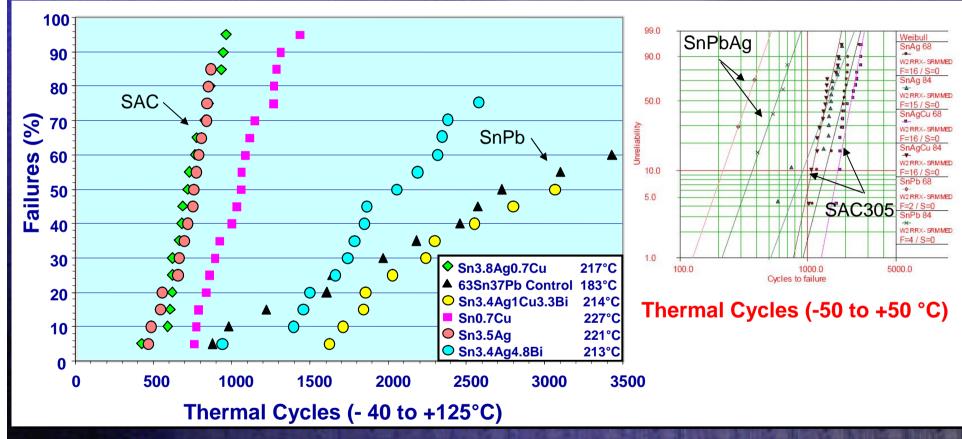
Tin whisker effects documented since the 1940's

#### > Tin Whiskers

- "grow" from nearly all tin alloys
  - > pure Sn (<3% Pb)
  - > SnBi, SnCu, SnAgCu
  - > Few microns to over 10 mm
- Electrically conductive
- Crystalline



(Photo courtesy of NASA Goddard Space Flight Center)


#### Whisker induced failures:

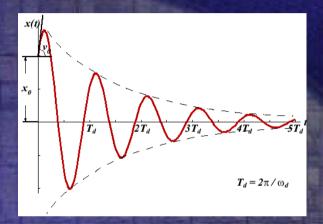
- Short Circuit bridges two adjacent pins
- Metal vapor arc high voltage and specific atmosphere can result in plasma arc capable of catastrophic damage
- Contamination whisker breaks off and interferes with mechanical, optical, or MEMS component

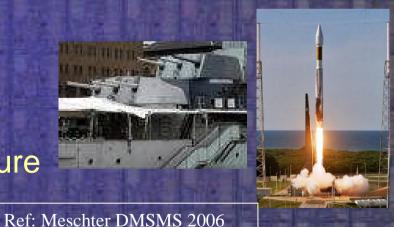


## Pb-free solder interconnect fatigue in temperature cycling






Higher strain range, Sn-Pb better than SAC Pb-free *Opposite is true for lower temperature ranges.* 



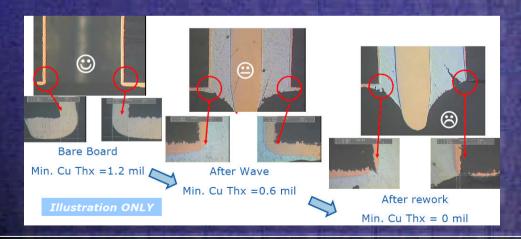

## Vibration/shock loading – Little data available



- Vibration/shock performance was a tough topic with Sn-Pb solder
- Vibration/shock: Not much available data
  - Cell phone drop-shock testing driving consumer electronics industry
- Combined vibration and temperature cycling: Not much data available






What heritage Sn-Pb tests need to be different for Pb-free?

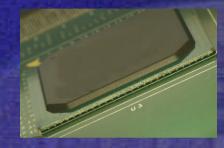


### Copper dissolution



- Copper dissolves when in contact with SAC alloys
  - Higher temperature + High Sn = High dissolution
  - > Need to leave enough copper for subsequent repair





Ref: Meschter Boeing Lead-free conference, Anaheim Nov. 15, 2007



## BGAs: Mixing of alloys – today's problem









#### **Undesirable joint:**

A moderate volume of Sn-Pb results in partial dissolution of Pb-free ball



#### A little better joint:

More Sn-Pb results in a fairly *uniform* composition and phase distribution.
-Tighter solder process window required



#### **Best Solder Joint:**

Un-Mixed BGA solder Ball

- Part pad evaluation needed

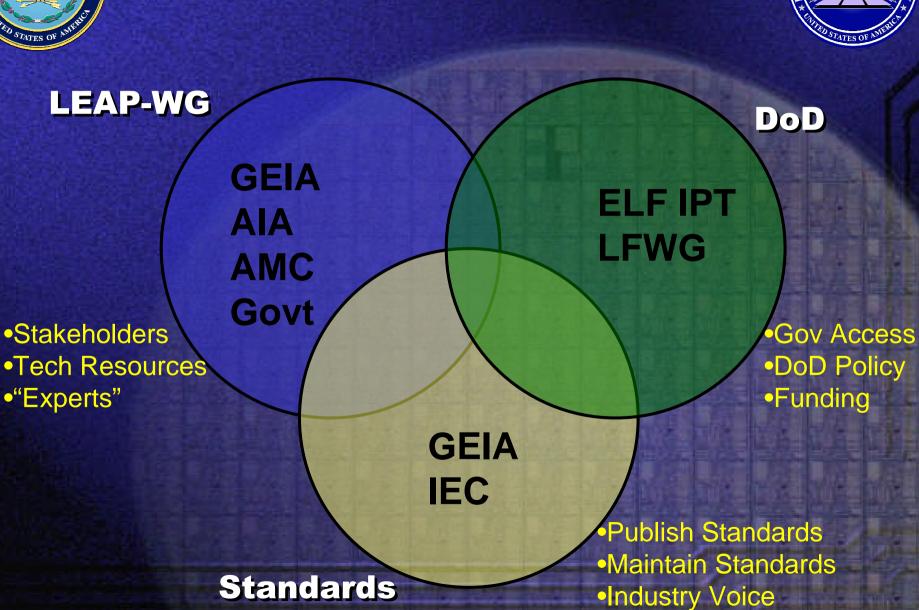
P. Snugovsky Celestica (2006)

Un-Mixed BGA solder ball has higher reliability

Ref: Meschter Boeing Lead-free conference, Anaheim Nov. 15, 2007



### Lead-free Impacts and Concerns




- Proliferation and instability of materials and finishes
- Lack of test and qualification data in harsh environments
- Design, Development and Production Processes
- Repair and Rework Processes
- > Cost
- Configuration control of component supply chain



## A Comprehensive Strategy







#### Lead-free Guidance Documents



- GEIA-STD-0005-1 Performance Standard for Aerospace and High Performance Electronic Systems Containing Lead-free Solder
- GEIA-STD-0005-2 Standard for Mitigating the Effects of Tin in Aerospace and High Performance Electronic Systems
- **GEIA-HB-0005-1** Program Management / Systems Engineering Guidelines for Managing the Transition to Lead-free Electronics
- **GEIA-HB-0005-2** Technical Guidelines for Aerospace and High Performance Electronic Systems Containing Lead-free Solder
- **GEIA-STD-0005-3** Performance Testing for Aerospace and High Performance Electronics Containing Lead-free Solder and Finishes
- **GEIA-HB-0005-3** Rework and Repair Handbook To Address the Implications of Lead-Free Electronics and Mixed Assemblies in Aerospace and High Performance Electronic Systems
- **GEIA-HB-0005-4** Impact of Lead-Free Solder on Aerospace Electronic System Reliability and Safety Analysis
- GEIA-XX-0005-X Proposed document regarding Configuration Control



#### Conclusion



- Military, aerospace, and high performance electronics systems have increased challenges due to environmental initiatives
- We must better engage the supply chain
- We must continue to develop technical solutions
  - "Engineers will have to be engineers"
- We must continue to develop agile, adaptive design and manufacturing processes to accommodate the rapidly changing global electronics industry

The DoD must **continue** to field reliable and supportable systems to meet mission requirements